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Translated from Prlroda, 1958, 1, 19-25. 

IMS  OF MOTIQI OF AM EARTH-SATELLITS 

Prof. Yu. A. Pobedonos^ev 

Sergo Ordzhonlkldze Aviation Institute of Moscow 

The appearance, In our natural environment, of artificial heavenly 
bodies, created by the hands of the Soviet people, has of course led many 
people to ask: How are th^y launched and why do they stay in flight? 

While making no claim to describe precisely all the forces acting 
on a satellite, with due allowance for the asphericity of the earth and the 
resistance of the terrestrial atmosphere, we shall here attempt to give Just 
the most general idea of the fundamental relationships and laws governing the 
launching of a satellite by a multi-stage rocket end its motion around the 
globe. 

If in the first approximation we disregard the Influence of the 
moon, of the other planets, and of the sun on the satellite's trajectory, we 
may draw ourselves the following picture of the satellite's motion in the 
spherical gravitational field of the earth. 

For an artificial satellite to travel around the earth in a circu- 
lar orbit and not fall to the surface, it is necessary, on the basis of 
D'Alembert's principle, that the weight of the satellite at any given height 
of the orbit should be equal to the centrifugal inertlal force. Neglecting 
the attractions of the'sun and planets, atmospheric resistance, and the non- 
central potential of the terrestrial gravitation, this condition may be 
expressed mathematically as: 

r2 

where m is the mass of the satellite; Vcr is its "circular" velocity, 
directed along the tangent to the orbit; ro is the radius of the earth; 
is the radius of the satellite orbit; g and go are the acceleration of 
gravity at height h • r - r0 and at the earth's surface respectively. 

From this equation it is not difficult to determine the velocity 
Vcr which the satellite must have in order to rotate around the earth at 
height h: 

'cr ^gr. (1) 

Substituting in this expression the quantity 

g - ßo(ro:r)2* 

we finally obtain,, since the acceleration of gravity decreases in inverse 
proportion to the square of the distance from the center of the earth, the 
expression: 

rcr (Vcr)( 
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In the general case of a satellite traveling around the earth in an ellip- 
tical path, its velocity at any point of tnis path will be defined by the 
equation: 

Vel 'cr Jz.t, 
where a is the major semi-axis of the ellipse. 

Consequently, the higher above the surface of the earth the path 
of the satellite lies, the less its "circular" velocity Vcr will need to be. 
The minimum value of the circular velocity is at the surface of the earth, 
when r ■ r0. Substituting the numerical values: gQ ■ 9.61 m/sec2 and 
r0 • 6.578'10

a m, we find: 

(Vcr)0 • 7912 m/sec. 

If now there were no atmosphere at the surface of the earth, then 
by giving a body a horizontal velocity of 7912 m/sec we should obtain an 
artificial satellite revolving in a surface-grazing circular orbit. This 
velocity is sometimes called the "first cosmic velocity". But in reality 
vhe dense strata of the atmosphere at the earth's surface will of course 
speedily brake the satellite's motion, so that it will lose speed and Inevi- 
tably fall to the earth's surface. 

With Increasing height the density of the terrestrial atmosphere 
diminishes rather rapidly. *   Thus at a height of 50 km the density amounts 
to only one thousandth of the density at sea level, and at a height of 100 km, 
to less than one millionth. 

However, as is shown by the relevant calculations, even the one- 
milllonth part of the surface density is sufficient to cause a noticeable 
braking action on a satellite traveling at heights of the order of 100 km. 

If we imagine a satellite of spherical shape with a ratio of weight 
to maximum cross-sectional area equal to 200 kg/m2, this satellite, at a 
height of 200 km, will be able to stay up for only about two and a half days. 
By this time its velocity will have become considerably less than that 
required for motion in a circular orbit, and the satellite will begin to 
descend into the less dense layers of the atmosphere and, rapidly losing 
speed, will fall to the earth. Therefore we may take it that artificial 
satellites may expediently be put up only at heights greater than 200 km. 
At heights of the order of 100 km the satellite would obviously have to be 
supplied with a very small additional forward thrust, to balance the resis- 
tance of the medium. It is proposed that satellites of this kind, having a 
small continuous thrust, should be called "satellolds". 

To launch an artificial earth-satellite, it is necessary not only 
to give it the "circular" velocity Vcr as defined by equation (2), but also 
to expend some work in raising the satellite from the earth's surface to the 
given height h. 

See "Priroda", 1957, No.9, pp. 3-12. 
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This work T^ expended In lifting may be defined as the difference 
between the potential energy of the body at the level of the earth's surface 
and its potential energy at height h. 

The potential energy (In a gravitational force-field) is measured 
as the weight of the body in question at a stated height, multiplied by its 
distance r from the enter of the earth. Iben at the surface of the earth 
the potential energy of a body of mass m will be equal to mgo^o» while at 
altitude h ■ r - r© it will be defined by the equation: 

mgr ■ mgo 2 
r 

The difference of these two potential energies will be: 

Th «■ßoro U - "-?)• 

This amount of work T^ will have to be expended to raise a satellite of mass 
m from the surface of the earth to height h. 

If we express the work T^ as a velocity V^ defined by the equation 

2 
we find 

V? : - 2vo t1 - f >• 
Thus the total energy Tx expended in raising a satellite of nass m 

from the surface of the earth to height h and in there giving it the velo- 
city Vcr will be equal to the sum 

,    "v2. *&. Tx • I" + T- 

If this total work Tx is likewise expressed as a "characteristic" 
velocity Vx, defined in the same way as velocities Vcr and V^ by the 
expression: 

mV? 

then, after a few elementary calculations and after substituting the numerical 
values of the constants go and r0, we finally get for the characteristic velo- 
city of the satellite the formula: 

11190 ^ 1     Zr' 

For r ■ r0 the velocity Vx becomes equal to (Vcr)0 at the surface of 
the earth, that is, equal to 7912 m/sec, the first cosmic velocity (since in 
this case no work is expended in lifting the satellite).    For r -»« the velo- 
city Vx tends toward 11,190 m/sec. 

. 3 . 
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A body which acquires the latter velocity ^11,190 m/aecj In the 
field of terrestrial gravitation will be capable of departing to an Infinite 
distance from the earth. This velocity is sometimes called the "second cosmic 
velocity". 

Actually, of course, if we also take into account the gravitational 
force of the sun end the earth's "circular" velocity in its orbit around the 
sun, which is equal to 29.77 km/sec, then a somewhat greater speed will be 
required for a body to recede to infinity from the solar system; namely, a 
velocity of about 16.7 km/sec in this case. 

Values of Vcr and V^ for intermediate heights h /i.e., between 0 
and •/ are listed in Table 1 and plotted in Figure 1. 

This same Table 1 gives the periods of rotation of the satellite 
around the earth as related to the orbital height. The higher the satellite 
travels above the earth's surface, the longer its orbital period. This rela- 
tionship is shown graphically in Figure 2. 

The characteristic velocity Vx represents the minimum total work 
which must be expended to elevate the satellite to an orbit of given height 
and then to give it the necessary circular velocity of rotation. 

Thus, for Instance, in order to produce a satellite rotating around 
the earth at a height of 200 km, we have to expend upon it, as a minimum, the 
amount of work defined by the characteristic velocity 8031 m/sec. Under real 
conditions the rocket-launching of a satellite requires some additional expen- 
ditures of energy: energy to overcome the force of air resistance in the dense 
strata of the atmosphere, energy to overcome the force of terrestrial gravita- 
tion during the launching period, and after that, the energy required to change 
the direction of the satellite's velocity. 

These additional amounts of work may be figured as certain additions 
to the characteristic velocity Vx; they will depend on the program of velo- 
cities chosen for the satellite, and on the shape of the trajectory along 
which it rises to the given height. 

Numerical calculations show that for actual weight relationships, 
accelerating forces and satellite dimensions, the total of these additional 
velocities may be set at about 10-15$ of the characteristic velocity Vx. 

Thus, allowing for real conditions of satellite firing and accelera- 
tion, the characteristic velocity Vx must be increased by 10-15^ as compared 
with its theoretical value. If the velocity Vx was calculated to be of the 
order of 8 km/sec, then under real conditions it must be increased to 9 km/sec 
approximately. 

Taking our departure from this latter value of the characteristic 
velocity, we are now in a position to state the power requirements for the 
launching of an artificial earth-satellite. 

The most likely present-day apparatus capable of producing velocities 
of the order of 8-9 km/sec is the rocket. The velocity of a rocket, under 

- 4 - 



TABLE 1 • 

Circular 
Height h velocity 

(km) Vcr (m/se. 

0 7912 
200 7791 
300 7732 
400 7675 
500 7619 

1000 7365 
2000 6903 
4000 6203 
6000 5679 
■ 0 

Characteristic 
velocity 

Vx (m/sec) 

7912 
8031 
6068 
8142 
8194 
8431 
8806 
9312 
9640 

11,190 

Slderlal period 
of rotation •• 

1 hr 24 min 25 sec 
1 hr 28 mln 25 sec 
1 hr 30 mln 27 sec 
1 hr 32 mln 29 sec 
1 hr 34 nln 32 sec 
1 hr 45 Bin 2 sec 
2 hrs 7 Bin 9 sec 
2 hrs 55 Bin 17 sec 
3 hrs 48 Bin 18 sec 
0 hrs 0 Bin 0 sec 

See A,M. Shternfel'd. Iskustvennyye sputniki Zeali artificial 
Earth-satellites/» National Tech. Press, 1956. 

«• The siderial period of rotation is the tiae in which a heavenly 
body Bakes one cooplete revolution and returns to its previous 
position with respect to the stars. 

Pig. 1. Values of Ver and Vx for 
different heights. 

Pig. 2. Relation between period of 
satellite's rotation around the earth 
and height of its orbit. 
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conditions of no gravitational forces and no resistance exerted by the medium, 
is defined by the well-known formula of ^lolkovskl: * 

Vz • u In Z, 

where Vz denotes the rocket velocity as defined by this ^iolkovski formula, 
u IB the velocity of ejection of fuel particles from the rocket or, as it 
has been suggested we call it, the "effective discharge velocity", and the 
quantity Z, represented here by its natural logarithm, is the ratio between 
the initial mass of the rocket and its final mass, a ratio which is usually 
called '^lolkovskl's number". ♦* 

The discharge velocity 
by experimental means. 

u of the rocket fuel is usually determined 

By simultaneously measuring, on the test-firing stand, the thrust P 
of the rocket motor and the quantity to of fuel which it is using and dis- 
charging from the rocket each second, one can find the ratio of these quanti- 
ties, the so-called specific thrust: 

sp I [    M 
a> l kg/sec J. 

This fundamentally important ratio indicates how many kilograms of 
thrust the rocket motor can supply for each kilogram of fuel expended per 
second. 

Multiplying P8p by the acceleration of gravity, go ■ 9.61 cm/sec2, 
we find the discharge velocity u (m/sec) which has to be inserted in 
Clolkovskl's formula. Figure 3 is a graph of the relationship between the 
thrust Psp, the quantity Z, and the velocity Vz. 

Modem rocket motors deliver a thrust P8p of the order of 

250 [. yg 1. Accordingly, to obtain a velocity Vz of 9 km/sec it is neces- 

sary, in the rocket, to achieve a ^lolkovski number of Z • 40. 

For a single-stage rocket, this means that the initial weight, with 
fuel, will have to be forty times greater than the weight of the empty rocket 
after it has expended all its fuel. This is not yet a design possibility. 
The best we can achieve in a single stage rocket, with lightness of design 
pushed to the limit, is a ratio of Z ■ 6, with the useful payload usually of 
the order of 2$ of the rocket's initial weight (at firing). 

Thus in striving to achieve greater rocket velocities we must 
Inevitably, as ^lolkovski predicted, change over to multi-stage (compound) 
rockets. 

« 

«« 

For more detail, see "Prlroda" 1957, No.10, pp. 73-78. 

This Z, as also the Inferior z of Vz, represents the initial of 
^lolkovskl's name in its German spelling (Ziolkowski). (Translator.) 
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In Figure 5 the vertical lines with the shaded strips on one side 
of them Indicate the actual present-day boundaries of the regions of appli- 
cability for rockets with different numbers of stages. 

For multi-stage rocket calculations, many methods exist, but the 
majority suffer from complexity, difficulty of visualization. Involved 
terminology and cumbersome definitions. Recently there was published in the 
Journals of the British Interplanetary Society a procedure for multi-stage 
rocket calculations proposed by the Dutch engineer Vertregt, *  a procedure 
which must be recognized as the most efficient. He suggef'^ed basing the 
computation procedure for compound multi-stage rockets on the definition of 
Just four weights and three ratios between them, these data being sufficient 
for carrying out the majority of fundamental calculations for different types 
of step-rockets. 

Figure 4 is a diagram of a step-rocket, showing the nomenclature 
for its principal component parts. 

According to this scheme, our rocket consists of payload, stages, 
and sub-rockets. 

The payload of a rocket may consist of Instruments or passengers, 
including also the load-carrying structures and envelope which support and 
shield the Instruments or passengers during flight. 

A rocket stage consists of the fuel consumed by the rocket in the 
period of action of the said stage until the moment of its separation, plus 
the holders (tanks) containing this fuel, plus the motors, accessories and 
control apparatus, if there are such in the separating stage; also the 
envelope and its stiffening elements. 

Sub-rocket is the name for a combination of payload and rocket 
stages, one of the latter being the working (operative) stage, while all the 
other stages, which continue in flight along with the payload of the compound 
rocket, constitute the "payload", as it were, of the said sub-rocket. 

It is expedient to number the stages and sub-rockets in ascending 
order, beginning from the base of the diagram in Figure 4, and preceding 
toward the top. 

Then for the first sub-rocket the working stage will be Stage 1, 
while its "payload" will be Sub-rocket 2; for Sub-rocket 2 the working stage 
will be Stage 2, while its "payload" will be Sub-rocket 3; for Sub-rocket 3 
the working stage will be Stage 3, while the "payload" is Sub-rocket 4, and 
so on. 

For the n*h sub-rocket the working stage will be the nth stage, and 
the payload will be the weight of the /final/ useful load of the rocket. 

See "Voprosy Raketnol Tekhniki" [Problems of Rocket Technology), 1956, 
No.l, pp. 3-7. 

6 - 

^^^__,..  ^ ,.« ä^X 



Regions of applicability for 
rockets of different nuabers 

of stages 

91olkovskl nuaber 

Flg. S. Graph of relationship between 
specific thrust PBp, aass-ratio Z and 
velocity V,. 

Pig. 4. Diagraa of aaltl-stage rocket. 
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This manner of fixing the definitlonß and nomenclature of the 
several fundamental parts of a compound rocket Is very simple, easy to 
remember, and makes it possible to avoid a whole series of mistakes which 
are always possible in the absence of such a precise systematization. 

The four fundamental rocket weights which underlie the definitions 
will be as follows. 

The weight q of the useful payload of the step-rocket» Starting 
from this weight, the whole rocket is planned and constructed. Consequently 
it is the most important weight in the calculations. As we have already said, 
the payload consists of instruments or living beings carried in the rocket, 
the stiffening structures bearing the payload, and the envelope or hull which 
protects it in flight. 

The weight m of the fuel expended from each stage. To this 
weight, which in the main is that of the fuel and oxidizer, there must be 
added the weight of auxiliary supplies such as, for Instance, the hydrogen 
peroxide used to drive the turbopump unit, catalyst, compressed gas ... 
nitrogen, helium ... and many other chemicals expended in the given stage 
during its working period. 

The "dry weight" 0 of the stage, that is, the total weight of 
the empty tanks, motors, turbopump units, valves and piping, supporting 
structure, envelope, control mechanisms and so forth. In other words, the 
weight of everything which is in the said Rtage and which separates along 
with it from the remaining parts of the rocket during flight. 

The total initial weight G of the individual sub-rocket. Thus in 
accordance with the above-defined identifications of the various component 
parts of the rocket, we shall use Gi, for instance, to designate the total 
initial weight of the whole n-stage rocket. 

(Us will be the total weight of fuel expended in the second stage; 
n9 will be the "dry weight" of the third stage, and so forth. 

Besides these four definitions of the weights of the most important 
parts of the step-rocket, three ratios between them must also be defined, 
as follows. 

First, p will be the "relative weight" of a sub-rocket, that is, 
the ratio of its total initial weight to the weight of its "payload". Thus: 

Gi 
Pi Gi+i 

Then P, the over-all "relative weight" of the multi-stage rocket, 
that is, the ratio between the initial weight Gi of an n-stage rocket and 

the weight q of its useful payload, will be P « IIpi, where the sign 8 means 
i l 

the product of all the quantities p^ for all values of 1 from 1 to n. 
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The quantity P Is one of the most important relationships in 
the multi-stage rocket. 

Second, there is S, the very illuminating and important 
"structural factor" of the stage; it is the ratio of the total initial 
weight of the given stage plus fuel to its weight after expenditure of all 
its fuel, or in other words this "structural factor" shows the degree of 
perfection achieved in the structural design of this stage, in the rocket 
sense of the term. 

Third, there is the already defined Z, the "mass ratio" of the 
rocket, which is called "(Jiolkovski's number". 

The Qiolkovski velocity for a multi-stage rocket may be found as 
the sum of the (Jiolkovski velocities for each sub-rocket. 

Then this total ^lolkovski velocity for an n-stage rocket will 
be defined by the expression: 

n 
Vz ■ Eui In z±. 

If for alJ stages the combustion-product discharge velocities 
ux, up  ..., un are to be the same and equal to u, then we have Vz ■ u In Z, 
where 

n 
Z « TI Zj,, 

which is correct, of course, only under this condition that the velocities 
u^ for each of the n stages of the rocket are the same. 

The "relative weight" of the whole n-stage rocket will be: 
n Si - 1 

P • ZTT ~ - i Si - zi 

Its total weight before firing: 

d - qP. 

The weight of the fuel in the first stage of the rocket: 

and the "dry weight" of the first-stage structure: 

01 ■ ^ srnr- 
If the "structural factor" S and the "mass ratio" Zi are the 

same for all stages and sub-rockets, then we may write still simpler 
equations as follows: 

- 8 
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or 

'-'1^=4-)". 

and 

With these expressions, the other relationships may also be easily 
found. 

We shall illustrate the use of the above formulae by a concrete 
example. 

Let it be required to determine the chief characteristics of a 
four-stage rocket intended for accelerating an earth-satellite of weight 
q ■ 300 kg to a velocity Vz ■ 9000 m/sec. 

This is a velocity which, as we have already stated, is capable 
of giving the satellite the final characteristic velocity Vx ■ 6050 m/sec 
which is necessary to establish It in a circular orbit at a height of a 
little more than 200 km above sea level and also to make up the air resis- 
tance velocity losses and gravitational losses. 

For greatest simplicity of calculation, let us take the same values 
of u and S for each stage of this rocket, namely u ■ 2400 m/sec and 
S - 4.7. « 

With u ■ 2400 m/sec, the over-all mass ratio (Qiolkovski number) 
for velocity Vz ■ 9000 m/sec will have to be 

Z - 42.5 

Then according to the equation given above, the over-all "relative weight" 
of the whole four-stage rocket will be: 

P - 372. 

Consequently the total initial weight of this four-stage rocket, according 
to the previously stated definition, will amount to: 

Gi ■ qP ■ 111.6 tons, 

which is entirely realizable and practical, since it calls for a first-stage 
rocket motor with a thrust of about 220 tons, and stands for the testing of 
such motors are already built and in operation in the United States. 

* These, according to published data, are the actual characteristics of 
certain types of foreign rockets, e.g., one of the American experimental 
rockets, the Viking. 
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The "dry weight" (^ of the last stage, which together with the 

payload q will be accelerated to the final maximum velocity and will travel 
with the satellite in Its orbit, will be given by the equation: 

i 

m-ff-^V"1" 216 kg. 

These empty tanks, closest in position to the payload of the stage, may of 
course be utilized as structural material to create a larger artificial 
earth-satellite. 

The total weight of fuel in all four stages of the rocket will 
amount to: 

E «,-C,- -j- • -—■.87.6 tons 

while the "dry weight" of all its four stages will be: 

EH, -i -i—j-- 23.7 tons. 

Thus a four-stage rocket, having motor and structural characteristics 
which are quite realizable in practice, with a weight at firing of about 
112 tons and a total fuel consumption of about 68 tons, will be capable of 
placing a satellite in its orbit, and there communicating, to a structural 
mass of all-up weight about 500 kg, the velocity requisite for free rotation 
around the earth. 

Already this is a very tangible and plausible finding, since in 
the above example we have utilized nothing but presently achievable charac- 
teristics (according to data published in the press *) of rockets and rocket 
motors operating on ordinary chemical fuel. 

♦ Translator's note: Before the launching of the first Soviet artificial 
satellite in October 1957, there was a general black-out of concrete 
information on the Soviet program. All Soviet writers on the subject 
were careful to use, for Illustrative purposes, only American satellite 
data. 
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